ESERCIZI RISOLTI DI INGEGNERIA GEOTECNICA E GEOLOGIA APPLICATA

Tensioni nel sottosuolo, capacità portante e cedimenti delle fondazioni, geofisica ed idrologia. Concetti di base, equazioni, metodi di calcolo ed esempi applicativi

VOLUME 1

di GIULIO RIGA

INDICE GENERALE

Pren	nessa		11
Intro	oduzione.		13
CAP	1TOLO 1		
PRE	SSIONE T	OTALE, EFFETTIVA E NEUTRALE	15
1.1	Pressione	totale, effettiva e neutrale	15
CAP	1TOLO 2		
DIST	ribuzioi	NE DEGLI SFORZI	21
2.1	Tensioni	indotte nel sottosuolo	21
	2.1.1	Metodo empirico	21
2.2	Teoria de	ell'elasticità	25
	2.1.2	Carico puntiforme	25
	2.1.3	Carico uniforme su un'area circolare	27
	2.1.4	Carico uniforme su un'area rettangolare	30
	2.1.5	Carico uniforme su un'area quadrata	39
	2.1.6	Carico uniforme su un'area rettangolare infinitamente lunga	. 42
CAP	ITOLO 3		
CAP	acità po	RTANTE DELLE FONDAZIONI SUPERFICIALI	47
3.1	Le fondaz	zioni superficiali	47
3.2	Fattori ric	Juttivi	56
3.3	Valutazio	one semi-empirica della capacità portante	60
3.4	Capacità	portante sotto carichi sismici	62
	3.4.1	Metodo Mauaeri & Novità (2004)	62

	3.4.2	Metodo Paolucci e Pecker (1997)	63
	3.4.3	Metodo di Richards, Helm e Budhu (1993)	64
3.5	Verifiche	alle tensioni ammissibili	66
3.6	Verifiche	agli stati limiti ultimi (SLU)	66
	3.6.1	Verifiche agli stati limite di esercizio (SLE)	
	3.6.2	Parametri geotecnici caratteristici	70
	3.6.3	Distribuzione normale	70
	3.6.4	Distribuzione "t" di Student	71
	3.6.5	Valori di progetto	<i>7</i> 1
CAP	ITOLO 4		
CED	IMENTI D	ELLE FONDAZIONI SUPERFICIALI	121
4.1	Cediment	to immediato delle fondazioni	121
	4.1.1	Teoria dell'elasticità	121
	4.1.2	Metodo dello strato elastico	123
	4.1.3	Metodo semplificato	124
	4.1.4	Metodo di Skempton-Bjerrum	125
	4.1.5	Metodo di Anagnastropoulos	127
	4.1.6	Metodo di Meyerhof	127
	4.1.7	Metodo di Peck e Bazaraa	128
	4.1.8	Metodo di Peck, Hanson, and Thorrburn	129
	4.1.9	Metodo di Terzaghi e Peck	130
	4.1.10	Metodo di Burland-Burbidice	131
	4.1.11	Metodo Schultze e Sherif	132
4.2	Cediment	to edometrico	150
4.3	Cediment	ti dai dati delle prove CPT e SPT	161
CAP	1TOLO 5		
FON	DAZIONI	PROFONDE	165
5.1	Fondazio	ni profonde	165

	5.1.1	Metodo AGI	165			
	5.1.2	Metodo Terzaghi	169			
	5.1.3	Metodo con prove SPT	170			
	5.1.4	Metodo con prove CPT	171			
	5.1.5	Carico limite di un gruppo di pali	172			
	5.1.6	Cedimenti del palo singolo e del gruppo di pali	174			
	<i>5.1.7</i>	Pali soggetti a forze orizzontali	177			
	5.1.8	Verifiche agli stati limite ultimi (SLU)	181			
	5.1.9	Resistenze di pali soggetti a carichi assiali	183			
	5.1.10	Resistenze di pali soggetti a carichi trasversali	184			
CAP1	ITOLO 6					
GEO	FISICA		219			
6.1	Indagine (geoelettrica	219			
	6.1.1	Sondaggio elettrico verticale (SEV)	221			
	6.1.2	Profilo elettrico	227			
	6.1.3	Modelli 2D e 3D (ETR)	235			
	6.1.4	Esempi di modelli 2D	238			
	6.1.4	Resistività tipiche dei terreni	243			
6.2	Porosità to	otale	244			
6.3	Resistenzo	a trasversale e conduttanza longitudinale	247			
6.4	Intrusione	di acqua marina	251			
6.5	Prospezio	ne sismica a rifrazione	253			
	6.5.1.	Metodo delle intercette	253			
	6.5.2	Metodo del tempo intercetto	254			
	6.5.3	Metodo della distanza critica	255			
	6.5.4	Superfici di discontinuità inclinate	255			
6.6	Determino	azione della profondità del bedrock	262			
6.7	Metodi di abbattimento dei terreni					
6.8	Ricerca di strutture sepolte					
6.9	Costanti elastiche					

CAPITOLO 7

1DBU	LOGIA	275			
7.1	Evapotraspirazione				
7.2	Indice di aridità	277			
7.3	Diagramma ombrometrico di Bagnouls & Gaussen	280			
7.4	Poligono di Thiessen	282			
7.5	Analisi geomorfica di un bacino idrografico	284			
	7.5.1 Caratteristiche generali del bacino	284			
	7.5.2 Definizione del reticolo idrografico	284			
	7.5.3 Anomalia gerarchica	289			
	7.5.4 Dimensioni geometriche orizzontali	289			
	7.5.5 Dimensioni geometriche verticali	290			
	7.5.6 Pendenza	292			
	7.5.7 Calcolo della curva ipsografica ed ipsometrica	296			
7.6	Carta delle pendenze	309			
7.7	Elaborazioni pluviometriche	311			
	7.7.1 Tempo di corrivazione	311			
	7.7.2 Previsione quantitativa delle piogge intense	314			
7.8	Valutazione della portata di piena	324			
7.9	Stima del coefficiente di deflusso	328			
7.10	Trasporto solido	332			
<i>7</i> .11	Evaporazione da piccoli specchi d'acqua	334			
7.12	Misura della portata d'acqua	336			
	7.12.1 Metodo della paratoia	336			
	7.12.2 Metodo volumetrico	338			
	7.12.3 Metodo della velocità dell'acqua	340			
	7.12.4 Metodo della conducibilità	342			
	7.12.5 Metodo dello stramazzo	344			
7.13	Stima della capacità di smaltimento di una sezione				
	idraulica348				

<i>7</i> .13.1	Caratteristiche della sezione idraulica	351
<i>7</i> .13.2	Sezione di forma composta	352
7.14 Deflusso r	ninimo vitale	360
7.14	Deflusso minimo vitale	360
<i>7</i> .14.1	Metodi per la determinazione del deflusso minimo vitale	.360
APPENDICE		373
BIBLIOGRAFIA		375

PREMESSA

Dopo aver passato anni a sviluppare procedure di calcolo per software tecnici, ho deciso di diffondere sia i presupposti teorici che le metodologie di calcolo necessarie per la determinazione dei risultati numerici.

Questo volume, ideato non solo per gli studenti ma anche per il giovane professionista, può essere considerato come un manuale dove trovare i presupposti teorici e le metodologie di base per la risoluzione di problemi di geologia applicata e di ingegneria geotecnica.

In questo volume sicuramente avrò fatto degli errori e ci sono delle inesattezze, sviste ed incompletezze di trattazione.

Vi invito a segnalarmi non solo gli errori ma eventuali suggerimenti o commenti in modo da effettuare le modifiche necessarie per un continuo miglioramento del testo.

Voglio concludere ringraziando il Dr. Alessandro Cittadino per l'aiuto dato nella preparazione dei grafici contenuti nel testo ed il Dr. Antonio Santoro per avermi fornito e concesso l'utilizzo di alcuni modelli ETR (Electrical Tomografy Resistivity).

Giulio Riga

INTRODUZIONE

Questo testo nasce essenzialmente da una raccolta di esercizi sviluppati per essere utilizzati nelle diverse situazioni di lavoro che si sono presentate e nei programmi di calcolo automatico realizzati a partire dal 1985.

Il libro, sia nelle sue parti che nel suo insieme, si configura come un manuale pratico aggiornato e di duttile impiego che contiene una vasta selezione di esercizi svolti.

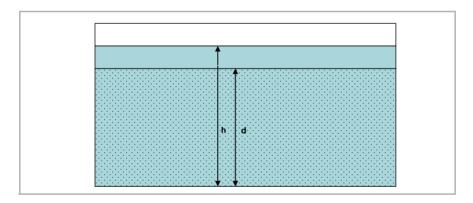
Lo scopo è quello di offrire una panoramica delle possibilità di calcolo che si hanno nel campo dell'ingegneria geotecnica e di far acquisire il metodo di calcolo per lo svolgimento dei problemi proposti utilizzando solo carta e penna.

Le procedure di calcolo proposte, sperimentate da vari autori in casi reali, presuppongono un minimo di conoscenze teoriche delle tematiche trattate.

Al tal fine, ho ritenuto utile presentare ciascun esercizio accompagnato da una breve descrizione del tema trattato, dei metodi di calcolo utilizzati e delle formule necessarie per risolverlo.

Per maggiori approfondimenti si consiglia al lettore di consultare i testi dove i temi proposti e le procedure utilizzate sono trattati con maggior dettaglio.

Il volume esplora alcuni dei più importanti argomenti dell'ingegneria geotecnica e della geologia applicata:


- 1) Pressione totale, effettiva e neutrale
- 2) Distribuzione degli sforzi
- 3) Capacità portante delle fondazioni superficiali
- 4) Cedimenti delle fondazioni superficiali
- 5) Fondazioni profonde
- 6) Geofisica
- 7) Idrologia

1.1 Pressione totale, effettiva e neutrale

Se consideriamo una massa satura di terra, le forze che agiscono in essa possono essere divise in due tipi: **pressioni intergranulari o effettive o efficaci** che sono trasmesse direttamente da grano a grano e **pressione dell'acqua dei pori o pressioni neutre** che agisce attraverso il fluido che riempie i vuoti.

Per capire il comportamento del terreno è necessario stabilire una legge di interazione tra le varie fasi; tale legge è stata proposta nel 1923 da Terzaghi che l'ha definita *principio delle tensioni efficaci*.

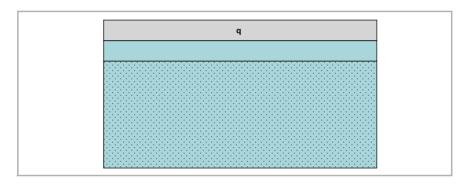
Consideriamo uno strato di sabbia satura di spessore *d* posto ad un livello *h* dal fondo della sabbia (h>d).

Se indichiamo con γ_w il peso unitario dell'acqua, γ_{sat} il peso di volume del terreno saturo, la pressione verticale totale e la pressione dei pori sono date dalle seguenti equazioni:

$$\sigma_{vo} = \gamma_w \cdot (h - d) + \gamma_{sat} \cdot d$$
$$u_o = \gamma_w \cdot h$$

Figura 1.1 Schema con un solo strato

La pressione effettiva verticale si ricava sottraendo alla pressione totale la pressione dei pori:


$$\sigma vo' = \sigma v \ o \ - uo = \ \gamma_w \cdot (h \ - d) + \gamma sat \cdot d - \gamma_w \cdot h = (\gamma sat - \gamma_w) \cdot d$$

Il termine (γ sat - γ _w) è chiamato peso di volume del terreno immerso ed è indicato con γ' .

Consideriamo un sistema di strati orizzontali con un carico uniforme in superficie e la falda stazionaria, è possibile aspettarsi che tutte le forze dipendono dalla profondità degli stati e non dalla posizione laterale.

In questo caso la pressione verticale totale può essere determinata integrando il peso di tutti gli strati fino al punto di calcolo e aggiungendo l'eventuale carico posto in superficie.

Figura 1.2 Schema con più strati

$$\sigma_{\rm vo} = q + \sum \gamma \cdot d$$

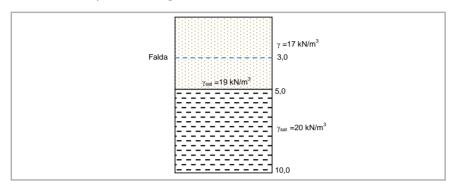
Se l'acqua è a riposo, la pressione dei pori alla profondità h è data dalla seguente equazione:

$$u_{\rm o} = \gamma_{\rm w} \cdot h$$

dove γ_w è il peso unitario dell'acqua.

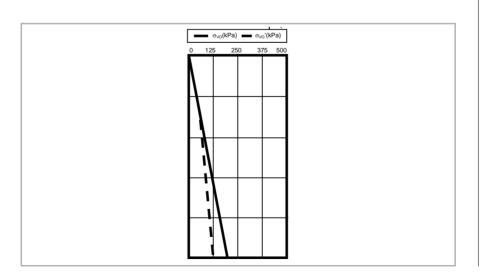
La pressione effettiva è data dalla seguente relazione:

Pressione effettiva = Pressione totale - Pressione dei pori


$$\sigma_{vo'} = \sigma_{vo} - u_{o}$$

Quando la pressione effettiva è uguale a zero $[\sigma_{vo}' = (\sigma_{vo} - u_o) = 0]$ non ci sono forze trasmesse tra le particelle a contatto ed il fenomeno della liquefazione inizia.

ESERCIZIO 1 - Valutazione della pressione effettiva


Calcolare la pressione effettiva alla profondità di 10 metri dal p.c. utilizzando i dati riportati nella figura 1.3

SOLUZIONE

Calcolo della pressione effettiva

PROFONDITA' (m)	PRESSIONE TOTALE σ _{v0} (kN/m²)		PRESSIONE DEI PORI u _o (kN/m²)	PRESSIONE EFFETTIVA $\sigma_{vo'} = \sigma_{vo} - u_0 \text{ (kN/m}^2\text{)}$
3	3 · 17	= 51,0	0	51,0
5	$(3 \cdot 17) + (2 \cdot 19)$	= 89,0	$(2 \cdot 9,8) = 19,6$	69,4
10	$(3 \cdot 17) + (2 \cdot 19) + (5 \cdot 2)$	20) = 189,0	$(7 \cdot 9,8) = 68,6$	120,4

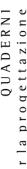
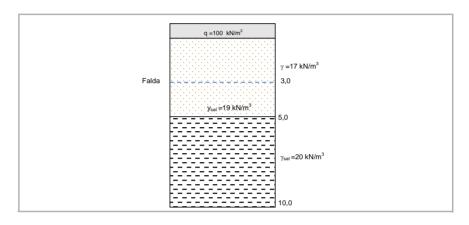


Figura 1.3 Schema con un solo strato

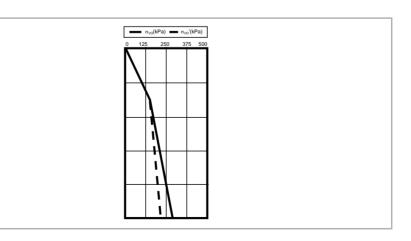
Figura 1.4 Andamento della pressione totale ed effettiva in funzione della profondità



ESERCIZIO N. 2 - Stima della pressione effettiva con carico in superficie

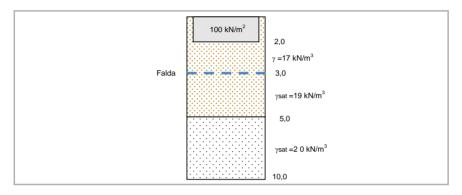
Calcolare la pressione effettiva alla profondità di 10 metri dal p.c. utilizzando i dati riportati nella figura 1.5 e considerando un carico in posto in superficie di 100 kN/m².

Dati di calcolo



SOLUZIONE

PROF. (m)	PRESSIONE TOTALE σ _{vo} (kN/m²)		PRESSIONE DEI PORI u _o (kN/m²)	PRESSIONE EFFETTIVA $\sigma_{vo'} = \sigma_{vo} - u_o (kN/m^2)$
3	3 · 17 +100	= 151,0	0	151,0
5	$(3 \cdot 17) + (2 \cdot 19) + 100$	= 189,0	$(2 \cdot 9,8) = 19,6$	169,4
10	$(3 \cdot 17) + (2 \cdot 19) + (5 \cdot 19 + 100)$	= 289,0	$(7 \cdot 9,8) = 68,6$	220,4


funzione della profondità

ESERCIZIO N. 3 - Stima della pressione effettiva con carico posto in profondità

Calcolare la pressione effettiva alla profondità di 10 metri dal p.c. utilizzando i dati riportati nella figura 1.7 e considerando un carico di 100 kN/m² posto alla profondità di 2,0 metri dal p.c.

SOLUZIONE

PROF. (m)	PRESSIONE TOTALE σ _{vo} (kN/m²)	PRESSIONE DEI PORI u _o (kN/m²)	PRESSIONE EFFETTIVA $\sigma_{vo'} = \sigma_{vo} - u_o (kN/m^2)$
3	$(3 \cdot 17) + 100 - (2 \cdot 17)$ = 117,0	0	117,0
5	$(3 \cdot 17) + (2 \cdot 19) - (2 \cdot 17)$ = 155,0	$(2 \cdot 9,8) = 19,6$	135,4
10	$(3 \cdot 17) + (2 \cdot 19) + (5 \cdot 19) - (2 \cdot 17) = 255,0$	$(7 \cdot 9,8) = 68,6$	186,4

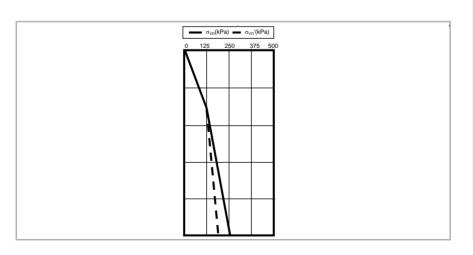


Figura 1.8 Andamento della pressione totale ed effettiva in funzione della profondità

2.1 Tensioni indotte nel sottosuolo

Quando deve essere calcolato il cedimento di una fondazione occorre stimare l'incremento di carico causato dall'applicazione di un carico posto sulla superficie del terreno.

2.1.1 Metodo empirico

E' un metodo semplice per calcolare la distribuzione delle pressioni nel sottosuolo, basato sulla assunzione che l'area sulla quale il carico superficiale agisce, aumenta con la profondità.

Le superfici interessate dallo stesso carico superficiale sono limitate da piani inclinati di 27° (2:1).

Nella figura 2.1 è schematizzata la distribuzione delle pressioni sotto una fondazione continua.

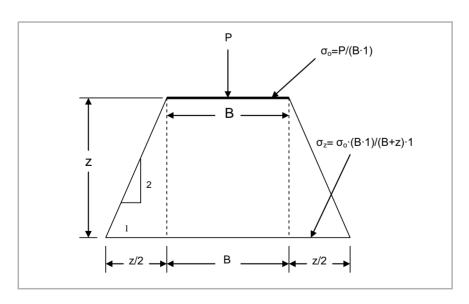


Figura 2.1 Schema della distribuzione della pressione sotto una fondazione continua

Alla profondità z la base della fondazione aumenta di z/2 su ciascun lato. La larghezza alla profondità z vale B + z e l'incremento di carico è dato dalla sequente equazione:

$$\sigma_z = \frac{Carico}{(B+z)\cdot 1} = \frac{\sigma_o \cdot (B\cdot 1)}{(B+z)\cdot 1}$$

dove σ_o = pressione di contatto

Analogamente per una fondazione rettangolare di larghezza B e lunghezza L, alla profondità z, le dimensioni dell'area sono (B+z) e (L+z). L'incremento di carico è dato dalla seguente equazione:

$$\sigma_{\bar{c}} = \frac{Carico}{(B+z)\cdot (L+z)} = \frac{\sigma_o \cdot (B\cdot L)}{(B+z)\cdot (L+z)}$$

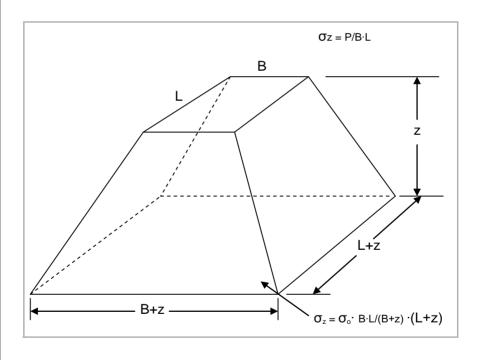


Figura 2.2 Schema della distribuzione della pressione sotto una fondazione continua

ESERCIZIO N.1 - Valutazione della distribuzione delle pressioni nel sottosuolo

Calcolare la distribuzione delle pressioni nel sottosuolo utilizzando i seguenti dati:

DATI DI CALCOLO	VALORE
Larghezza	4 m
Lunghezza	5 m
Profondità	0 m
Carico	1200 kN
Profondità di calcolo	10 m

SOLUZIONE

- 1) Calcolare B + Z (larghezza + profondità di calcolo)
- 2) Calcolare L + Z (lunghezza + profondità di calcolo)
- 3) Calcolare l'area [(B+Z) · (L+Z)]

4) Calcolare l'incremento di carico alla profondità Z
$$\sigma_{z} = \frac{Carico}{(B+z)\cdot(L+z)}$$

Z (m)	B+Z (m)	L+Z (m)	Area (m²)	Δ σ (z) (kPa)
0	4	5	20	60 (1)
1	5	6	30	40
2	6	7	42	28
3	7	8	56	21
4	8	9	72	17
5	9	10	90	13
6	10	11	110	11
7	11	12	132	9
8	12	13	156	8
9	13	14	182	7
10	14	15	210	6

(1) Alla profondità Z = 0 m

$$B+Z = (4+0) = 4$$

$$L+Z = (5+0) = 5$$

$$A = [(B+Z) \cdot (L+Z) = [(4 \cdot 5)] = 20$$

$$\sigma_z = \frac{Carico}{(B+z)\cdot (L+z)} = \frac{1200}{20} = 60$$

2.2 Teoria dell'elasticità

2.1.2 Carico puntiforme

Nel 1885, Boussinesq ha sviluppato un'equazione per determinare le tensioni nel sottosuolo, assimilando il terreno ad un solido elastico, semi-infinito, omogeneo ed isotropo.

La tensione prodotta da una forza puntiforme Q che agisce verticalmente su una superficie orizzontale può essere ottenuta con la seguente equazione:

$$\sigma_z = \frac{3 \cdot Q}{2 \cdot \pi^2 \cdot \left[1 + 2 \cdot \left(r/z\right)^2\right]^{5/2}}$$

dove

Q = carico puntuale;

z = profondità di calcolo della tensione;

r = distanza orizzontale di calcolo di σ_z .

L'equazione può essere semplificata nella forma seguente:

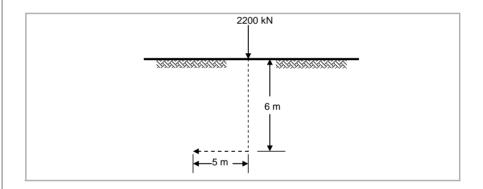
$$\sigma_{\bar{z}} = \frac{Q}{z^2} \cdot I_p$$

dove

I_i = fattore d'influenza dello sforzo verticale tabella 2.1

Tab. 2.1 - Fattore d'influenza dello sforzo verticale

r/Z	lp	r/z	lp	r/z	lp
0,00	0,478	0,80	0,139	1,60	0,020
0,10	0,466	0,90	0,108	1,70	0,016
0,20	0,433	1,00	0,084	1,80	0,013
0,30	0,385	1,10	0,066	1,90	0,011
0,40	0,329	1,20	0,051	2,00	0,009
0,50	0,273	1,30	0,040	2,20	0,006
0,60	0,221	1,40	0,032	2,40	0,004
0,70	0,176	1,50	0,025	2,60	0,003


ESERCIZIO N. 2 -Valutazione della distribuzione delle pressioni nel sottosuolo

Calcolare la distribuzione delle pressioni nel sottosuolo utilizzando i seguenti dati:

DATI DI CALCOLO	VALORE
Profondità del carico	0 m
Carico	2200 kN
Profondità di calcolo	6 m
Distanza r	0÷5

Figura 2.3 Schema di calcolo

SOLUZIONE

Per r = 0 m

$$\sigma_z = \frac{3 \cdot Q}{2 \cdot \pi^2 \cdot \left[1 + 2 \cdot (r/z)^2\right]^{5/2}} = \frac{3 \cdot 2200}{2 \cdot \pi^2 \cdot \left[1 + 2 \cdot (0/6)^2\right]^{5/2}} = 29kPa$$

Per r = 5 m

$$\sigma_z = \frac{3 \cdot 2200}{2 \cdot \pi^2 \cdot \left[1 + 2 \cdot (5/6)^2\right]^{5/2}} = 7.8kPa$$

Utilizzando il fattore d'influenza ${\rm I_p}$ si calcola la pressione alla profondità di 6,0 m.

Per
$$r/z = 5/6 = 0.83 I_p = 0.128$$

$$\sigma_z = \frac{Q}{z^2} \cdot I_P = \frac{2200}{6^2} \cdot 0,128 = 7,8kPa$$

QUADERNI

2.1.3 Carico uniforme su un'area circolare

La pressione verticale al di sotto di un carico uniforme su un'area circolare può essere determinata utilizzando i fattori d'influenza riportati nella tabella 2.2. Nella tabella z, r e a rappresentano rispettivamente la profondità di calcolo della pressione, la distanza orizzontale dal centro del cerchio al punto in cui si desidera calcolare la pressione ed il raggio del cerchio sui cui agisce il carico.

Per calcolare la pressione verticale nel punto desiderato occorre moltiplicare il carico uniforme applicato all'area circolare per il fattore d'influenza.

Tab. 2.2 - Fattore d'influenza per un carico uniforme su un'area circolare

r/a										
z/a	0 I _p	0,25 I _p	0,5 I _p	1,0 I _p	1,5 I _p	2,0 I _p	2,5 I _p	3,0 I _p	3,5 I _p	4,0 I _p
0,25	0,986	0,983	0,964	0,460	0,015	0,002	0,000	0,000	0,000	0,000
0,50	0,911	0,895	0,840	0,418	0,060	0,010	0,003	0,000	0,000	0,000
0,75	0,784	0,762	0,691	0,374	0,105	0,025	0,010	0,002	0,000	0,000
1,00	0,646	0,625	0,560	0,335	0,105	0,043	0,016	0,007	0,003	0,000
1,25	0,524	0,508	0,455	0,295	0,135	0,057	0,023	0,010	0,005	0,001
1,50	0,424	0,413	0,374	0,256	0,137	0,064	0,029	0,013	0,007	0,002
1,75	0,346	0,336	0,309	0,223	0,135	0,071	0,037	0,018	0,009	0,004
2,00	0,284	0,277	0,258	0,194	0,127	0,073	0,041	0,022	0,012	0,006
2,50	0,200	0,196	0,186	0,150	0,109	0,073	0,044	0,028	0,017	0,011
3,0	0,146	0,142	0,137	0,117	0,091	0,066	0,045	0,031	0,022	0,015
4,0	0,087	0,086	0,083	0,076	0,061	0,052	0,041	0,031	0,024	0,018
5,0	0,057	0,057	0,056	0,052	0,045	0,039	0,033	0,027	0,022	0,018
7,0	0,030	0,030	0,029	0,028	0,026	0,024	0,021	0,019	0,016	0,015
10,0	0,015	0,015	0,014	0,014	0,013	0,013	0,013	0,012	0,012	0,011

ESERCIZIO N. 3 - Valutazione della distribuzione delle pressioni nel sottosuolo

Calcolare la distribuzione delle pressioni nel sottosuolo utilizzando i seguenti dati:

DATI DI CALCOLO	VALORE
Profondità del carico	0 m
Carico (Q)	800 kPa
Profondità di calcolo (z)	6 m
Raggio del cerchio (a)	3
Distanza r	0÷5

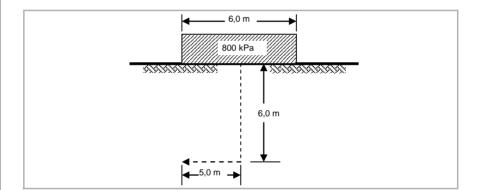


Figura 2.4 Schema di calcolo

SOLUZIONE

Calcolo del coefficiente d'influenza

1) Per
$$r = 0$$
; $z = 6$ m e $a = 3$

$$z/a = 6/3 = 2$$

$$r/a = 0/3 = 0$$

Fattore d'influenza dalla tabella 2.2 = 0,284

$$\sigma_z = Q \cdot I_p = 800 \cdot 0,284 = 227,2 \text{ kPa}$$

2) Per
$$r = 5$$
; $z = 6$ m e $a = 3$

$$z/a = 6/3 = 2$$

$$r/a = 5/3 = 1.66$$

Interpolazione dei fattori d'influenza Dalla tabella 2.2

Con z/a = 2.0 e r/a = 1.5 – fattore d'influenza = 0.127

Con z/a = 2.0 e r/a = 2.0 – fattore d'influenza = 0.073

 $I_p = 0.073 + (0.127 - 0.073)/5 \cdot 2 = 0.0946$

Cacolo della pressione alla profondità di 6,0 m.

 $\sigma_z = Q \cdot I_p = 800 \cdot 0,0946 = 75,68 \text{ kPa}$